lunes, 25 de agosto de 2014

Satélites artificiales y naves espaciales

SATÉLITES ARTIFICIALES Y NAVES ESPACIALES

1. Los satélites terrestres tiene diferentes aplicaciones, entre las cuales destacamos las siguientes: satélites meteorológicos, satélites geodésicos, satélites de comunicaciones, satélites de navegación, satélites científicos.




SATÉLITES METEOROLÓGICOS
Se tratan de cuerpos provistos de cámaras fotográficas, diseñadas para tomar imágenes de extensas regiones del planeta, lo que facilita el estudio de la distribución de mantos de nubes. Por este procedimiento, es factible por ejemplo, descubrir la formación de un huracán, antes de ser detectado por técnicas convencionales.
Con los mosaicos de fotografías satelitales se pueden trazar con gran precisión las líneas de igual presión (isobaras) y delimitar los centros de alta y baja presión.
Algunos satélites meteorológicos están equipados con sensores para medir  la radiación infrarroja de la superficie terrestre. Los equipos que fotografian nubes, están limitados a su funcionamiento durante las horas del día; los sensores, en cambio, pueden trabajar durante la noche. Estos aparatos pueden distinguir la presencia de nubes ya que, como el agua absorbe parte de la radiación infrarroja, la radiación donde se hallan las nubes es menor que en aquellas en donde no hay.
Algunos de los satélites meteorológicos más importantes han sido:
  • Misiones TIROS (Television Infrared Obserations Satellites; nueve artefactos lanzados entre 1960 y 1965.
  • Misiones TIROS OPERATIONAL (diez artefactos enviados entre 1965 y 1969)
  • Misiones IMPROVED TIROS OPERATIONAL (nueve artefactos lanzados entre 1970 y 1976)
  • Misiones NIMBUS (siete artefactos puestos en funcionamiento entre 1964 y 1978)
  • Misión GEOSTATIONARY OPERATIONAL ENVIROMENTAL SATELLITES (diez artefactos lanzados entre 1974 y 1987)


SATÉLITES GEODÉSICOS
La observación precisa de la posición de los satélites artificiales permite determinar la forma y dimensiones de la tierra, las características del abultamiento ecuatorial y la distribución de las masas del planeta.
Estos satélites están equipados con luces de destello muy intensas, fácilmente observables; los destellos se repiten en grupos cada cierto intervalo preciso de tiempo. Cada grupo de destellos se repite un número dado de veces por dia. Para observar estos satélites y otros más, se han montado telescopios en diversos puntos de la superficie terrestre; con ellos se puede fotografías en el cielo un campo extenso en breves intervalos de exposición.
Con la observación fotográfica de los satélites realizada desde varios lugares, se determinan sus órbitas con gran precisión y, al mismo tiempo, las coordenadas de los puntos donde se encuentran los telescopios.
Algunos de los principales satélites geodésicos puestos en órbita han sido:
  • Misión GEOS ( Geodetic Satellite; cuatro artefactos enviados entre 1965 y 1975)
  • Misión LAGEOS( Laser Geodynamic Satellites; lanzado en 1976)
  • Misión LANDSAT (cinco artefactos lanzados entre 1972 y 1984)


SATÉLITES DE COMUNICACIONES
El primer éxito en las comunicaciones entre puntos distintos de la Tierra a través de satélites se realizó en diciembre de 1958 por medio del satélite SCORE.
Las ondas de radio que se utiliza en las comunicaciones se propagan en línea recta; aquellas llamadas de onda corta, tienen la propiedad de ser reflejadas por ciertas capas ionizadas de la alta atmósfera, reenviándolas hacia la superficie terrestre. Las microondas no sufren reflexión y atraviesan esas capas, perdiéndose en el espacio. De esta manera, las ondas cortas pueden alcanzar grandes distancias; en cambio, las microondas tienen un alcance limitado.
Un satélite que acompañara la rotación de la tierra, para un observador fijo en la superficie terrestre, permanecería estacionario en un punto del cielo, siempre al alcance de las estaciones de comunicación. Con tres satélites en órbita, se asegura una cobertura completa y continua de toda la tierra, con excepción de las regiones polares.
Históricamente, algunos de los satélites de comunicación fueron:


  • Misión ECHO (cuatro artefactos lanzados entre 1960 y 1964)
  • Misión RELAY(dos artefactos enviados entre 1962 y 1964)
  • Misión SIRIO (italiano,1977)
  • Misiones GALAXY (tres artefactos enviados entre 1983 y 1984)
  • Misiones PALAPA (tres artefactos indonesios lanzados entre 1976 y 1987)


SATÉLITES DE NAVEGACIÓN
Estos aparatos son similares a los satélites geodésicos y se diferencian en que proporcionan información par que una aeronave o un barco pueda calcular su posición con mayor exactitud que por los métodos convencionales relacionados con la posición de las estrellas.
Además de su uso para la navegación, estos satélites son utilizados por el hombre, entre otras aplicaciones, para labores de catastro, exploracion geografica, instalación de industrias, aprovechamiento óptimo de recursos naturales, detección de cuencas acuíferas y seguimiento de animales (de mar, agua y tierra).


SATÉLITES CIENTÍFICOS
Este tipo de satélites fue construido principalmente para obtener información sobre diferentes aspectos vinculados con nuestro planeta, entre los que sobresalen los siguientes:
  • características de la ionosfera
  • campo magnético en torno a la tierra
  • intensidad de la radiación recibida
  • densidad y composición de la atmósfera.
Casi simultáneamente con este tipo, se construyeron y enviaron al espacio satélites especialmente adaptados para la investigación astronómica. Se trata de verdaderos observatorios orbitales
Es de destacar los satélites que son utilizados exclusivamente para el estudio del sol; entre los aspectos a estudiar con estos instrumentos, sobresalen:
  • tormentas en la fotosfera solar
  • evolución de las manchas solares
  • viento solar
Sin duda alguna, el campo más importante de utilidad de los satélites científicos astronómicos, es el estudio de las radiaciones. La atmósfera terrestre es un obstáculo para el estudio de las radiaciones del espacio; hasta que comenzaron a utilizarse satélites artificiales, el único medio de conseguir información acerca de ellas era los globos estratosféricos y los cohetes de sondeo equipados con instrumentos registradores.
Desde 1957, los satélites ofrecen grandes ventajas sobre cualquier otro sistema de detección terrestre: mayor altura y más prolongado lapso de permanencia en órbita.
Históricamente, algunos satelites mas importantes puestos en orbita han sido:
  • Misiones BEACON (dos artefactos entre 1958 y 1959)
  • Misiones OSO (Orbitin Solar Observatories; nueve artefactos lanzados entre 1962 y 1965)
  • Misiones ISIS (dos artefactos canadienses, enviados en 1961 y 1971, respectivamente
  • Misiones ESA (European Space Agency;seis artefactos enviados entre 1968 y 1978)


2. Se denomina sonda a todo artefacto enviado al espacio por medio de cohetes y provisto de instrumento de medición  y radiocomunicación que le permitan la exploración automática de un objeto particular escogido con anterioridad. Algunas sondas son enviadas a circunnavegar un planeta, a posarse sobre su superficie o simplemente a acercarse lo suficiente como para tomar datos que desde la Tierra son inaccesibles.
La utilización de sondas para la investigación de los planetas y otros astros del Sistema Solar, ha hecho que los observatorios terrestres pierdan competencia en estos temas.
Los datos enviados por las sondas han proporcionado un avance muy importante en el conocimiento científico de los astros del Sistema Solar.




3. En el caso del estudio de la Luna, las sondas empleadas pueden agruparse en cuatro tipos diferentes:
-Sondas de vuelo abierto
-Sondas de alunizaje (tanto de impacto como de alunizaje suave)
-Sondas de alunizaje con órbita intermedia alrededor de la Luna
-Satélites artificiales lunares.


4. Las naves espaciales son uno de los símbolos del siglo XX y los astronautas se identifican como una imagen del hombre “moderno”. Esta etapa comienza el 12 de abril de 1961, con los ciento ocho minutos del viaje orbital de Jurij Alekseevich Gagarin; se trata del primer vuelo del programa soviético VOSTOK, que comprendió un total de seis misiones tripuladas. La última, en la que viajó la primera mujer astronauta, se realizó en 1963. Le siguió el programa VOSHOD, con dos naves; en la segunda, el astronauta A. A. Leonov realizó la primera caminata espacial: durante 23 minutos permaneció “flotando” en el vacío, sujeto a la nave por una cable flexible.
Simultáneamente desde los EE.UU comenzaba la serie de lanzamientos de la naves MERCURY, el primero de los tres programas norteamericanos destinados a poner una hombre en la Luna.
El proyecto MERCURY comenzó en 1958 y acabó en 1963, con un total de nueve vuelos tripulados, precedidos por catorce lanzamientos de ensayo. Luego se inició el programa GEMINI, destinado al adiestramiento y ensayo de técnicas destinadas a desembarcar en nuestro satélite; se buscó probar el encuentro y atraques de naves en el espacio, el perfeccionamiento de sistemas de aterrizaje, el estudio de las reacciones de los astronautas tras largos períodos en el espacio y de su capacidad para abandonar la nave en vuelo y efectuar reparaciones; fueron doce naves lanzadas entre 1964 y 1966.
Finalmente, el programa APOLO logró que los astronautas Armstrong y Aldrin lograran alunizar el día 21 de julio de 1969, a las 2h 55m 20s, en el Mar de la Tranquilidad.
Paralelamente al programa APOLO, desde la base de Baikonur, los soviéticos iniciaron el proyecto SOJUZ, que se trataba de naves maniobrables con las cuales lograron montar una estación orbital, mediante el acoplamiento en pleno espacio de dos naves. Con estos vuelos se ensayaron nuevas técnicas de navegación y nuevas formas de trabajo en el espacio. También pusieron en órbita (en 1971) la estación SALJUT, un módulo habitable que podía funcionar tanto automáticamente como con tripulación a bordo.
Cabe destacar el proyecto en conjunto APOLO-SOJUZ de 1975, entre naves de los programas homónimos.


5. Los llamados laboratorios espaciales, fueron puestos en funcionamiento por los programas SKYLAB y MIR. Estos laboratorios son plataformas situadas en órbitas alrededor de la Tierra, con capacidad para albergar a varios tripulantes durante tiempos relativamente largos, y que disponen de los elementos necesarios para el transporte de sucesivos equipos de astronautas en viajes de ida y vuelta.




6. Los grandes observatorios astronómicos puestos en órbita en los últimos años, han permitido a los científicos acceder a un caudal enorme de información acerca de los astros, el cual, desde los observatorios terrestres es inaccesible.
La atmósfera terrestre actúa como un filtro natural que sólo deja pasar las radiaciones de determinada longitud de onda, impidiendo la transmisión del resto. Algunas pequeñas porciones de la región del infrarrojo y algunas frecuencias particulares de las ondas de radio alcanzan la superficie de la Tierra, el resto de las radiaciones que componen el espectro electromagnético son absorbidas a diferentes alturas sobre el suelo terrestre (como por ejemplo, los rayos X, la radiación ultravioleta y los rayos gamma). Así, la atmósfera resulta un obstáculo para el estudio de estas radiaciones del espacio.
Se trató de buscar soluciones intentando obtener información mediante el empleo de globos y cohetes; finalmente, el desarrollo de técnicas satelitales abrió un campo de nuevos conocimientos, actualmente en pleno desarrollo.


7. 

1. GRO: Gamma-Ray Observatory
2. AXAF: Advanced X-Ray Astrophysics Facility.
3. HST: Hubble Space Telescope.
4. SIRTF: Space Infrared Telescope Facility
5. ROSAT: ROentgenSATellite
5. ULYSSES
5. HIPPARCOS
5. GALILEO


8. La Comisión Nacional de Actividades Espaciales (CONAE) es una organización estatal argentina creada en 1991 y dependiente del Ministerio de Relaciones Exteriores, Comercio Internacional y Culto de ese país. La CONAE es el organismo competente para entender, diseñar, ejecutar, controlar, gestionar y administrar proyectos, actividades y emprendimientos en materia espacial en todo el ámbito de la República Argentina. Su misión es ejecutar el Plan Espacial Argentino, que culmina en el 2015.
Aquél tiene como principal objetivo la generación desde el espacio de información referida al territorio nacional de la Argentina, que combinada con la de otros orígenes, contribuya a mejorar las áreas de la actividad social y económica del país:
• Actividades agropecuarias, pesqueras y forestales.
• Hidrología, clima, mar y costas.
• Gestión de emergencias naturales.
• Vigilancia del medio ambiente y recursos naturales.
• Cartografía, Geología y producción minera.
Para cumplir con su misión la CONAE cuenta con información espacial generada por satélites construidos y diseñados en la Argentina. En conjunto con la empresa INVAP de Bariloche (Sociedad del Estado) y asociándose principalmente con la estadounidense NASA, provee la plataforma satelital y la mayoría de los instrumentos de dichos satélites. Estos son controlados desde la estación terrena Teófilo Tabanera situada en la provincia de Córdoba (está prevista para antes del 2015 la creación de dos estaciones satelitales más, posiblemente en Tierra del Fuego y en la Antártida). Tal es el caso de los denominados Satélites de Aplicaciones Científicas (SAC). Más de 80 universidades, entes, organismos y empresas nacionales participan en los proyectos y actividades de este Plan Espacial.




9. Argentina tiene un desarrollo importante en el área espacial. La CONAE ha puesto en órbita tres satélites de aplicación científica (SAC), con diferentes funciones: SAC-B; SAC-A y SAC-C. Todos fueron construidos en Argentina, por científicos argentinos.
El SAC-B fue lanzado el 4 de Noviembre de 1996. A partir de este satélite se logró el entrenamiento de un grupo de profesionales en ingeniería satelital y el desarrollo de centros de control de los satélites (hardware y software).
El SAC-A fue lanzado el 3 de Diciembre de 1998. La misión de este satélite fue un modelo tecnológico para la que luego fue la Misión del SAC-C. Puso a prueba instrumental desarrollado en el país, potencialmente aplicables para posteriores misiones. Experimentó la infraestructura de equipos de telemetría, telecomando y control.
El SAC-C fue lanzado el 21 de Noviembre de 2000. Es el primer satélite argentino de Teleobservación diseñado por la CONAE y construido por completo en la Argentina. Desde su puesta en órbita cumple exitosamente su misión de monitorear y generar información desde el espacio que se usa en estudios de los oceános, agricultura, minería, geología, cartografía, y educación, entre otros temas.
El SAC-C lleva entre su instrumental tres cámaras especiales que son las que generan las imágenes satelitales utilizadas en las aplicaciones científicas. También tiene otras importantes herramientas, aportadas por otras agencias espaciales.
La NASA, que se asoció en esta misión ofreciendo los servicios de lanzamiento y dos instrumentos para mediciones científicas. También las Agencias Espaciales de Italia, Francia y Dinamarca participaron con más tecnología. En instalaciones de la Agencia Espacial de Brasil  se realizaron las pruebas de lanzamiento.
CONAE sigue desarrollando nuevos satélites: SAC-D que estudiará los océanos, y el SAOCOM, utilizará tecnología de última generación para determinar la humedad de los suelos, información vital para la generación de modelos hidrológicos, productividad agrícola y control de inundaciones, entre otras utilidades que involucran el cuidado ambiental.

10. SAC-C: De observación de la Tierra
Lanzado 2000, se mantiene en buen funcionamiento, a pesar de que se le estimaba un tiempo de vida de tan sólo 4 años. Se trata de un satélite mediano de 485 kg de peso, de órbita baja, para la observación de la superficie terrestre por medio de 3 cámaras. Tiene como misión el monitoreo del ambiente y de catástrofes naturales. Obtiene imágenes de todo el territorio nacional, y de países limítrofes, en tiempo real; y produce imágenes del resto del mundo en modo almacenado. Los países asociados a esta misión son: EE.UU, Italia, Dinamarca, Francia y Brasil.
Reúne diez cargas útiles pertenecientes a cinco de los seis países mencionados. De estas cargas, las más importantes para la Argentina son sus tres potentes cámaras ópticas de observación de la superficie terrestre. Fueron desarrolladas por INVAP con una combinación de "bandas", resoluciones y sensibilidades que resulta ideal para el monitoreo del ambiente terrestre y marítimo de la Argentina.





11. Una imagen satelital se puede definir como la representación visual de la información capturada por un sensor montado en un satélite artificial. Estos sensores recogen información reflejada por la superficie de la tierra que luego es enviada a la Tierra y que procesada convenientemente entrega valiosa información sobre las características de la zona representada.
Ampliando lo suficiente una imagen digital (zoom) en la pantalla de una computadora, pueden observarse los píxeles que componen la imagen. Los píxeles son los puntos de color (siendo la escala de grises una gama de color monocromática). Las imágenes se forman como una sucesión de píxeles. La sucesión marca la coherencia de la información presentada, siendo su conjunto una matriz coherente de información para el uso digital. El área donde se proyectan estas matrices suele ser rectangular. La representación del píxel en pantalla, al punto de ser accesible a la vista por unidad, forma un área homogénea en cuanto a la variación del color y densidad por pulgada, siendo esta variación nula, y definiendo cada punto en base a la densidad, en lo referente al área.

12. Las imágenes satelitales permiten en la actualidad obtener información importante para una serie de instituciones y disciplinas que centran su estudio en el territorio y sus componentes. Su uso abarca desde las relaciones internacionales hasta la prevención de desastres naturales y, aun cuando nuestro país está iniciándose en esta tecnología espacial, los objetivos apuntan a diversificar las aplicaciones y aportes en la materia.Con motivo de su lanzamiento, se llevó a cabo el pasado martes 16 de abril el Seminario titulado “Aplicación de las imágenes del satélite chileno para el desarrollo del país”, el cual apuntó a describir las posibilidades existentes para el mundo académico y social en el uso de imágenes satelitales de alta definición.La actividad, desarrollada en el Salón de Honor de la Pontificia Universidad Católica de Valparaíso, contó con la participación del Servicio Aerofotogramétrico (SAF) dependiente de la Fuerza Aérea de Chile. Este organismo es el ente técnico y oficial del Estado destinado a la obtención y procesamiento de imágenes, sean estas aéreas o espaciales.

Ley de Gravitación Universal


LEY DE GRAVITACIÓN UNIVERSAL

A través de la historia de la humanidad, el avance en las diferentes áreas del conocimiento se debe a la contribución de numerosas personas que se han dedicado a observar, comparar, buscar relaciones básicas, las causas de determinados fenómenos, y proponer hipótesis para explicarlos.

Las leyes que se han considerado verdaderas durante un largo periodo de tiempo han tenido que dar paso a otras propuestas que se han generado a partir de nuevas observaciones.

Los conceptos que en la actualidad se tienen como obvios y verdaderos le ha tomado muchos siglos a la humanidad construirlos y en años venideros podrán modificarse debido a las nuevas aportaciones que harán los hombres y mujeres que incursionen en los diferentes campos del conocimiento.

La investigación del universo ha rebasado las fronteras de la Tierra, para ir más allá del espacio inmediato que la rodea. Con el creciente avance tecnológico, el hombre es capaz de explorar y descubrir cuerpos que se encuentran a distancias tales que ningún hombre hubiese podido alcanzar, aun viajando a la velocidad de la luz.

Seguramente el hombre primitivo se dio cuenta de un suceso muy común: todas las cosas caen al suelo si se les quita el apoyo o si se les suelta de donde están sujetas. A pesar de ser un hecho cotidiano, el hombre tardó mucho tiempo en plantearse las preguntas de cómo y por qué sucede esto y en encontrar las respuestas para explicarlo. Gracias al trabajo de numerosos investigadores a través del tiempo, se sabe que hechos tan simples como la caída de una piedra lanzada por la mano y fenómenos tan complejos como la distribución de las galaxias en el universo obedecen a la ley de la gravitación universal.






La ley de la Gravitación Universal es una ley física clásica que describe lainteracción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada porIsaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.

Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas  y  separados una distancia  es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir



 es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.

 es la constante de la Gravitación Universal.

Un momento culminante en la historia de la Física fue el descubrimiento realizado por Isaac Newton de la Ley de la Gravitación Universal: todos los objetos se atraen unos a otros con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que separa sus centros. Al someter a una sola ley matemática los fenómenos físicos más importantes del universo observable, Newton demostró que la física terrestre y la física celeste son una misma cosa. El concepto de gravitación lograba de un solo golpe:

Revelar el significado físico de las tres leyes de Kepler sobre el movimiento planetario.
Resolver el intrincado problema del origen de las mareas
Dar cuenta de la curiosa e inexplicable observación de Galileo Galilei de que el movimiento de un objeto en caída libre es independiente de su peso.


LOS PLANETAS TERRESTRES

 LOS PLANETAS TERRESTRES
Un planeta terrestre, también denominado planeta telúrico o planeta rocoso, es un planeta formado principalmente por silicatos (grupo de minerales). Los planetas terrestres son sustancialmente diferentes de los planetas gigantes gaseosos, los cuales puede que no tengan una superficie sólida y están constituidos principalmente por gases tales como hidrógeno, helio y agua en diversos estados de agregación. Todos los planetas terrestres tienen aproximadamente la misma estructura: un núcleo metálico, mayoritariamente férreo, y un manto de silicatos que lo rodea. La Luna tiene una composición similar, excepto el núcleo de hierro. Los planetas terrestres tienen cañones, cráteres, montañas y volcanes.
El Sistema Solar tiene cuatro planetas terrestres: Mercurio, Venus, La Tierra y Marte, y un planeta enano en el Cinturón de asteroides, Ceres. Durante la formación del Sistema Solar, probablemente hubo más planetas terrestres (planetesimales), pero se fusionaron o fueron destruidos por los cuatro planetas terrestres actuales. Sólo un planeta terrestre, la Tierra, tiene una hidrosfera activa.
Mercurio y Venus no tienen satélites naturales que los acompañen. En cambio la Tierra tiene un satélite, la Luna, que es el quinto satélite más grande del Sistema Solar. Marte tiene dos satélites naturales, Deimos y Fobos, de los que se cree que son dos asteroides capturados y tienen una forma irregular.
Terrestrial_planet_size_comparisons.jpg






LA TIERRA: es un planeta del Sistema Solar que gira alrededor de su estrella en la tercera órbita más interna. Es el más denso y el quinto mayor de los ocho planetas del Sistema Solar. También es el mayor de los cuatro terrestres. La Tierra se formó hace aproximadamente 4567 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.
En la actualidad, la Tierra completa una órbita alrededor del Sol cada vez que realiza 366.26 giros sobre su eje, el cual es equivalente a 365.26 días solar eso, a un año.




Características orbitales

Dist. media del Sol
1,000 UA
Radio medio
149.600.000 km
Excentricidad
0,017
Período orbital (sideral)
365,26 días
Periodo de rotación
23h.56m.
Velocidad orbital media
29,79 km/s
Inclinación del eje
23,45°
Número de satélites
1










                             Características físicas

Diámetro ecuatorial
12.756 km
Masa
1,000 Tierra
Densidad media
5,52 g/cm³
Gravedad superficial
1,00 Tierra
Velocidad de escape
11,2 km/s
Temp. media superf.: Día
58 ºC
Temp. media superf.: Noche
-88 ºC
Atmósfera
N2O2

planeta-tierra-3d.jpg



La corteza del planeta Tierra está formada por placas que flotan sobre el manto, una capa de materiales calientes y pastosos que, a veces, salen por una grieta formando volcanes.
La densidad y la presión aumentan hacia el centro de la Tierra. En el núcleo están los materiales más pesados, los metales. El calor los mantiene en estado líquido, con fuertes movimientos. El núcleo interno es sólido.
Las fuerzas internas de la Tierra se notan en el exterior. Los movimientos rápidos originan terremotos. Los lentos forman plegamientos, como los que crearon las montañas.
El rápido movimiento rotatorio y el núcleo metálico generan un campo magnético que, junto a la atmósfera, nos protege de las radiaciones nocivas del Sol y de las otras estrellas.
CAPAS DE LA TIERRA
Desde el exterior hacia el interior podemos dividir la Tierra en cinco partes:
Foto 3
Atmósfera: Es la cubierta gaseosa que rodea el cuerpo sólido del planeta. Tiene un grosor de más de 1.100 km, aunque la mitad de su masa se concentra en los 5,6 km más bajos.
Hidrosfera: Se compone principalmente de océanos, pero en sentido estricto comprende todas las superficies acuáticas del mundo, como mares interiores, lagos, ríos y aguas subterráneas. La profundidad media de los océanos es de 3.794 m, más de cinco veces la altura media de los continentes.
Litosfera: Compuesta sobre todo por la corteza terrestre, se extiende hasta los 100 km de profundidad. Las rocas de la litosfera tienen una densidad media de 2,7 veces la del agua y se componen casi por completo de 11 elementos, que juntos forman el 99,5% de su masa. El más abundante es el oxígeno, seguido por el silicio, aluminio, hierro, calcio, sodio, potasio, magnesio, titanio, hidrógeno y fósforo. Además, aparecen otros 11 elementos en cantidades menores del 0,1: carbono, manganeso, azufre, bario, cloro, cromo, flúor, circonio, níquel, estroncio y vanadio. Los elementos están presentes en la litosfera casi por completo en forma de compuestos más que en su estado libre.
La litosfera comprende dos capas, la corteza y el manto superior, que se dividen en unas doce placas tectónicas rígidas. El manto superior está separado de la corteza por una discontinuidad sísmica, la discontinuidad de Mohorovicic, y del manto inferior por una zona débil conocida como astenosfera. Las rocas plásticas y parcialmente fundidas de la astenosfera, de 100 km de grosor, permiten a los continentes trasladarse por la superficie terrestre y a los océanos abrirse y cerrarse.
Manto: Se extiende desde la base de la corteza hasta una profundidad de unos 2.900 km. Excepto en la zona conocida como astenosfera, es sólido y su densidad, que aumenta con la profundidad, oscila de 3,3 a 6. El manto superior se compone de hierro y silicatos de magnesio como el olivino y el inferior de una mezcla de óxidos de magnesio, hierro y silicio.
Núcleo: Tiene una capa exterior de unos 2.225 km de grosor con una densidad relativa media de 10 Kg por metro cúbico. Esta capa es probablemente rígida, su superficie exterior tiene depresiones y picos. Por el contrario, el núcleo interior, cuyo radio es de unos 1.275 km, es sólido. Ambas capas del núcleo se componen de hierro con un pequeño porcentaje de níquel y de otros elementos. Las temperaturas del núcleo interior pueden llegar a los 6.650 °C y su densidad media es de 13. Su presión (medida en GigaPascal, GPa) es millones de veces la presión en la superficie.
El núcleo interno irradia continuamente un calor intenso hacia afuera, a través de las diversas capas concéntricas que forman la porción sólida del planeta. La fuente de este calor es la energía liberada por la desintegración del uranio y otros elementos radiactivos. Las corrientes de convección dentro del manto trasladan la mayor parte de la energía térmica de la Tierra hasta la superficie.
MERCURIO:  es el planeta del sistema solar mas próximo al sol y el más pequeño. Forma parte de los denominados planetas interiores o rocosos y carece de satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radares y radiotelescopio. antiguamente se pensaba que mercurio siempre presentaba la misma cara al sol, situación similar al caso de la luna con la tierra; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron impulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días lo cual es ⅔ de su periodo de traslación.
Al ser un planeta cuya órbita es inferior a la de la tierra, Mercurio periódicamente pasa delante del sol, fenómeno que se denomina tránsito astronómico.
Mercurio está formado aproximadamente por un 70% de elementos metàlicos y un 30% de silicatos. La densidad de este planeta es la segunda màs grande de todo el sistema solar, siendo su valor de 5.430 km/m3, solo un poco menor que la densidad de la tierra.
ESTRUCTURA INTERNA DE MERCURIO
La Corteza: de menor densidad, constituida fundamentalmente por regolito, una sustancia fraccionada. Tiene un espesor variable que va desde los 100 hasta los 200 Km de profundidad.
El Manto: con una densidad intermedia. Ocupa un 25% de la estructura interior del planeta y los investigadores piensan que tiene un espesor que alcanza los 600 Km.
El núcleo interior: con una alta densidad. Ocupa el 42% del interior del planeta. La existencia de campo magnético parece indicar que su estado es semilíquido (plasmático) y con alto contenido de hierro.

MARTE:  es el cuarto planeta del Sistema Solar. Llamado así por el dios de la guerra de la mitología romana Marte, recibe a veces el apodo de Planeta rojo debido a la apariencia rojiza que le confiere el óxido de hierro que domina su superficie.
Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como laTierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra.
Aunque en apariencia podría parecer un planeta muerto, no lo es. Sus campos de dunas siguen siendo mecidos por el viento marciano, sus casquetes polares cambian con las estaciones e incluso parece que hay algunos pequeños flujos estacionales de agua. Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra.
Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6794 km y polar de 6750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01, tres veces mayor que el de la Tierra.
    Tycho Brahe midió con gran precisión el movimiento de Marte en el cielo. Los datos sobre el movimiento retrógrado aparente (lazos) permitieron a Kepler hallar la naturaleza elíptica de su órbita y determinar las leyes del movimiento planetario conocidas como leyes de Kepler.
Marte era el dios romano de la guerra y su equivalente griego se llamaba Ares. El color rojo del planeta Marte, relacionado con la sangre, favoreció que se le considera desde antiguo como un símbolo del dios de la guerra. En ocasiones se hace referencia a Marte como el Planeta Rojo.
        El año marciano dura 687 días terrestres o 668,6 soles. Un calendario marciano podría constar de dos años de 668 días por cada tres años de 669 días.
Marte tiene dos satélites, Fobos y Deimos. Son pequeños y giran rápido cerca del planeta. Esto dificulta su descubrimiento a través del telescopio.

FOBOS
Fobos
Fobos tiene poco más de 27 Km. por el lado más largo. Gira a 9.380 Km. del centro, es decir, a menos de 6.000 Km. de la superficie de Marte, cada 7 horas y media. Deimos es la mitad de Fobos y gira a 23.460 Km. del centro en poco más de 30 horas.
La característica más sobresaliente de Fobos es el cráter Stickney, que mide 10 km de diámetro. Su superficie está plagada de surcos de poca profundidad, que tienen una anchura entre 100 y 200 metros, y una profundidad de 20 o 30 metros.
Los pequeños fosos con bordes levantados, alineados en formaciones paralelas, podrían ser puntos en que el gas escapa del hielo subterráneo a través de fisuras. Fobos pudo haberse manifestado entonces como un cometa.
El enorme cráter de Fobos fue producido por un choque que estuvo a punto de destruirlo por completo. El periodo orbital de Fobos se está reduciendo paulatinamente. Por eso, desciende hacia la superficie marciana 9 metros por siglo, lo que significa que terminará colisionando con el planeta Marte dentro de unos 40 millones de años.
DEIMOS
Deimos
Decimos parece ser relativamente liso cuando se contempla a distancia. Sin embargo, en la realidad está salpicado de pequeños cráteres rellenos de materiales finos. Sus dimensiones son de 16x12x10 km. A diferencia de Fobos,Deimos no tiene ni un solo cráter mayor de 2,3 km de diámetro.
El gran parecido entre Fobos y Deimos con un determinado tipo de asteroides hace pensar que Marte ha captado dos de ellos, y más si tenemos en cuenta que el cinturón principal de planetoides está un poco más allá de la órbita de Marte.
Las perturbaciones generadas en Júpiter podrían haber empujado algunos cuerpos menores hacia las regiones interiores del Sistema Solar, favoreciendo así el proceso de atracción. Sin embargo, la forma de las órbitas de Fobos y Deimos son muy regulares y casi coincidentes con el plano ecuatorial de Marte, por lo que hacen improbable esta explicación.
Otra hipótesis es que ambos satélites hayan nacido de la ruptura de un único satélite orbital alrededor de Marte, como testimonia su forma. Pero aún en el caso de que hubieran surgido de un solo objeto partido por un impacto, sus orígenes se remontan a miles de millones de años.

Características orbitales

Dist. media del Sol
1,524 UA
Radio medio
227.900.000 km
Excentricidad
0,055
Período orbital (sideral)
1,88 años
Periodo de rotación
24h.37m.
Velocidad orbital media
24,13 km/s
Inclinación del eje
23,98°
Número de satélites
2
Características físicas

Diámetro ecuatorial
6.796 km
Masa
0,151Tierra
Densidad media
3,94 g/cm³
Gravedad superficial
0,38 Tierra
Velocidad de escape
5,0 km/s
Temp. media superf.: Día
17 ºC
Temp. media superf.: Noche
-143 ºC
Atmósfera
CO2

url.jpg



VENUS: es el segundo planeta del Sistema Solar en orden de distancia desde el Sol, y el tercero en cuanto a tamaño, de menor a mayor. Recibe su nombre en honor a Venus, la diosa romana del amor. Se trata de un planeta de tipo rocoso y terrestre, tiene un diámetro de 12.102 km, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición, aunque totalmente diferentes en cuestiones térmicas y atmosféricas. La órbita de Venus es una elipse con una excentricidad de menos del 1%, formando la órbita más circular de todos los planetas; apenas supera la de Neptuno. Su presión atmosférica es 90 veces superior a la terrestre; es por tanto la mayor presión atmosférica de todos los planetas rocosos.
  El brillo que puede alcanzar Venus puede llegar a la magnitud 4,3 pudiendo y todo si la noche es cerrada después del crepúsculo hacer sombra de cualquier objeto. Su color es blanco purísimo y destaca sobre cualquier estrella porque los planetas no titilan y su luz es fija en cambio, la de las estrellas al observarlas es variable.
Este planeta además posee el día más largo del sistema solar: 243 días terrestres, y su movimiento es dextrógiro, es decir, gira en el sentido de las manecillas del reloj, contrario al movimiento de los otros planetas. Por ello, en un día venusiano el sol sale por el oeste y se oculta por el este.
Al encontrarse Venus más cercano al Sol que la Tierra, siempre se puede encontrar, aproximadamente, en la misma dirección del Sol (su mayor elongaciones de 47,8°), por lo que desde la Tierra se puede ver sólo unas cuantas horas antes del otro, en unos meses del año, o después del ocaso, en el resto del año. A pesar de ello, cuando Venus es más brillante, puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos de día a simple vista, además de la Luna y el Sol. Venus es normalmente conocido como la estrella de la mañana (Lucero del Alba) o la estrella de la tarde (Lucero Vespertino) y, cuando es visible en el cielo nocturno, es el segundo objeto más brillante del firmamento, tras la Luna.Al encontrarse Venus más cercano al Sol que la Tierra, siempre se puede encontrar, aproximadamente, en la misma dirección del Sol (su mayor elongaciones de 47,8°), por lo que desde la Tierra se puede ver sólo unas cuantas horas antes del otro, en unos meses del año, o después del ocaso, en el resto del año. A pesar de ello, cuando Venus es más brillante, puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos de día a simple vista, además de la Luna y el Sol.

ESTRUCTURA INTERNA
Sin información sísmica o detalles, momento de inercia, existen pocos datos directos sobre la geoquímica y la estructura interna de Venus. Sin embargo, la similitud en tamaño y densidad entre Venus y la Tierra sugiere que ambos comparten una estructura interna afín: un núcleo, un manto, y una corteza planetaria. Al igual que la Tierra, se especula que el núcleo de Venus es al menos parcialmente líquido. El menor tamaño y densidad de Venus indica que las presiones en su interior son considerablemente menores que en la Tierra. La diferencia principal entre los dos planetas es la carencia de placas tectónicas en Venus, probablemente debido a la sequedad del manto y la superficie. Como consecuencia, la pérdida de calor en el planeta es escasa, evitando su enfriamiento y proporcionando una explicación viable sobre la carencia de un campo magnético interno.
Características orbitales

Dist. media del Sol
0,723 UA
Radio medio
108.200.000 km
Excentricidad
0,007
Período orbital (sideral)
224,7 días
Periodo de rotación
243 días
Velocidad orbital media
35,03 km/s
Inclinación del eje
177,3°
Número de satélites
0
Características físicas

Diámetro ecuatorial
12.100 km
Masa
0,815 Tierra
Densidad media
5,25 g/cm³
Gravedad superficial
0,88 Tierra
Velocidad de escape
4,25 km/s
Temp. media superf.: Día
477 ºC
Temp. media superf.: Noche
-33 ºC
Atmósfera
CO2

mercury_4179_1.jpg


“Características de Mercurio”. Disponible en URL http://www.mallorcaweb.net/masm/Mercurio.htm, consulta: 02/06/2014

“Características de Venus”. Disponible en URL

“Características de Marte”. Disponible en URL http://www.mallorcaweb.net/masm/Marte.htm, consulta: 02/06/2014

“Características de Tierra”. Disponible en URL http://www.mallorcaweb.net/masm/Tierra.htm, consulta: 02/06/2014

“Estructura del Planeta Tierra”. Disponible en URL

“Los satélites de Marte”. Disponible en URL

“Estructura interna de Venus”. Disponible en URL
Al encontrarse Venus más cercano al Sol que la Tierra, siempre se puede encontrar, aproximadamente, en la misma dirección del Sol (su mayor elongaciones de 47,8°), por lo que desde la Tierra se puede ver sólo unas cuantas horas antes del otro, en unos meses del año, o después del ocaso, en el resto del año. A pesar de ello, cuando Venus es más brillante, puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos de día a simple vista, además de la Luna y el Sol.